

STEAM VOIP
SECURITY
BY LUIGI AURIEMMA

Overview and details about the security issues found in the Steam voice

framework.

ReVuln Ltd.

http://revuln.com

@revuln

info@revuln.com

Revision 3

http://revuln.com/
http://twitter.com/revuln
mailto:info@revuln.com

TABLE OF CONTENTS

Contents

Steam and Steamworks __ 1

The voice chat __ 3

Technical overview of the voice chat ___ 5

Security issues ___ 9

Security Impact ___ 12

FAQ ___ 13

Changelog ___ 15

Company Information __ 16

STEAM AND STEAMWORKS

Steam VOIP security

Steam and Steamworks

STEAM

Steam1 is the gaming platform developed by Valve Software and used by millions of players around the

world to buy and play games, for multiplayer matchmaking and for its gaming-related social network.

STEAMWORKS API

The most interesting feature of Steam is its framework called Steamworks2. It contains the APIs used by

most of the games available on this platform for integrating the following main features3:

 Stats & Achievements

 User Authentication & Ownership

 Multiplayer Matchmaking

 Community

 DLC and Content

 Peer-to-peer networking

 Cloud

 Anti-Cheat

 Voice chat

 DRM

The main aspect of the framework, from a security perspective, is it’s role in increasing the attack surface of

the games that use its API and making them remotely exploitable through its security vulnerabilities.

Additionally the framework and its operations are completely transparent to the final user (the player)

who doesn’t know what level of interaction is allowed from the other players or what are the external

inputs that can be used to access and communicate with the framework.

The target of this security auditing has been just the Voice chat feature that allows the players to

communicate via the voip system integrated in Steam and used on many games.

This research has been commissioned just by the developers of one of the games that use this Steamworks

feature, Epic Games4 for the Unreal Engine 4 5.

1 http://steampowered.com
2 http://www.steampowered.com/steamworks/
3 https://partner.steamgames.com/documentation/api
4 http://www.epicgames.com
5 https://www.unrealengine.com

http://steampowered.com/
http://www.steampowered.com/steamworks/
https://partner.steamgames.com/documentation/api
http://www.epicgames.com/
https://www.unrealengine.com/

STEAM AND STEAMWORKS

Steam VOIP security

VULNERABLE VERSIONS

This security auditing has been performed black-box (no Steam source code available) against the current

versions of Steam and Steamworks available at the moment of the work:

Steam package versions: 1401381906

Steamclient.dll: 2.25.32.45

NON-VULNERABLE VERSONS

Steam package versions: 1404163764

Steamclient.dll: 2.30.30.94

Fixes available in Steam from 03 Jul 2014.

SECURITY MEASURES USED IN THE AFFECTED CODE

Quick considerations about the vulnerable Steamclient.dll:

 It supports DEP

 It doesn’t support ASLR, which instead is supported by steamclient64.dll but is not used by Steam

 It’s digitally signed

 The functions affected by stack-related vulnerabilities do not use stack cookies

THE VOICE CHAT

Steam VOIP security

The voice chat

The VOIP framework available in Steamworks can be used in two ways:

 As a voice chat with the Steam friends through the Steam chat interface

 In-game with the games that support it

Using the voice chat in Steam requires that the other endpoint is one of our friends and he accepts the voice

chat6.

This sort of “restriction” doesn’t involve the games where, instead, any player can speak to the other people

inside the same lobby or server, often the members of the same team for those games in which there are

two or more teams.

Additionally there is no need to configure settings, when a player joins a lobby both his voice and the one of

the other players are already active.

6 http://steamcommunity.com/sharedfiles/filedetails/?id=164655181

http://steamcommunity.com/sharedfiles/filedetails/?id=164655181

THE VOICE CHAT

Steam VOIP security

The following is an example of users speaking while playing the game Grid 27.

The own voice can be captured via push-to-talk or automatically while talking, it depends by the default

settings of the game and in both the cases it’s necessary to have a certain level of input volume to activate

the capturing, just like a squelch8.

Receiving voice data is enabled by default on all the games and must be manually disabled or limited by the

user if allowed by the game, for example in Grid 2 the game gives automatically “voice to all” everytime we

join and change a lobby.

That means any user playing on the same server, lobby or team of the attacker will be targeted by any

malicious voip data broadcasted by the attacker through the server or peer-to-peer.

7 http://store.steampowered.com/app/44350/
8 http://en.wikipedia.org/wiki/Squelch

http://store.steampowered.com/app/44350/
http://en.wikipedia.org/wiki/Squelch

TECHNICAL OVERVIEW OF THE VOICE CHAT

Steam VOIP security

Technical overview of the voice chat

STEAMCLIENT.DLL AND THE API

Technically the in-game voice chat works in the following way:

 All the code necessary to handle the data is located in steamclient.dll and steamclient64.dll

 This DLL is located in the Steam folder and a copy, got from the Steamworks framework used by

the game, is located in the game folder

 The game loads the DLL of the Steam folder

 In this case the DLL works as a wrapper interfaced via IPC (events, shared memory and named

pipes) to the running Steam.exe process

 So when the game calls an API, all the operation is executed inside the Steam.exe process through

the steamclient.dll loaded in it (both Steam and the game use this DLL)

 A security vulnerability in the API compromises Steam and causes the freezing of the game which

is waiting a reply from the IPC interface

 Steam offers some APIs to use its network code but it’s up to the game to use it or their own

protocol to transmit and receive the audio data

The IsteamUser APIs that handle the voice data are very easy to use:

 GetVoice for capturing and compressing the voice data from the microphone

 DecompressVoice for decoding the received audio data in 16-bit, signed integer PCM format

What a game does is using its own protocol for sending and receiving the audio data without touching or

modifying the content of the data generated by GetVoice or received from the network. The role of a server

is just broadcasting the received data “as is” to the other clients.

The clients call DecompressVoice on the received data to decode it.

There are no limitations about the size of the voip data, so it’s possible to use DecompressVoice with

chunks of any size and it’s all up to the game. For example Unreal Engine 4 uses a buffer of 8192 bytes

while Portal 2 and Counter Strike Global Offensive use 18432, Team Fortress 2 and Half-Life 2 use 2048 and

all the others like SteamworksExample project and Grid 2 use 1024.

So, just to recap, if an attacker sends malformed voip data to the chat of a game, it’s Steam that will be

exploited.

Please note that the Steam chat doesn’t use GetVoice API to capture the audio, but it uses DecompressVoice

for decoding the incoming data and so it’s vulnerable to the vulnerabilities described in this paper.

TECHNICAL OVERVIEW OF THE VOICE CHAT

Steam VOIP security

DECOMPRESSVOICE

The DecompressVoice API is our target because the data sent by the other players is received and passed to

this function “as is”.

The following are the prototype and the comments from Steamworks:

// Decompresses a chunk of compressed data produced by GetVoice().
// nBytesWritten is set to the number of bytes written to pDestBuffer unless the return value is
 k_EvoiceResultBufferTooSmall.
// In that case, nBytesWritten is set to the size of the buffer required to decompress thegiven
// data. The suggested buffer size for the destination buffer is 22 kilobytes.
// The output format of the data is 16-bit signed at the requested samples per second.
// If you’re upgrading from an older Steamworks API, you’ll want to pass in 11025 to nDesiredSampleRate

virtual EvoiceResult DecompressVoice(

const void *pCompressed, < INPUT DATA

uint32 cbCompressed, < SIZE OF INPUT DATA

void *pDestBuffer, > OUTPUT BUFFER

uint32 cbDestBufferSize, > MAXIMUM SIZE OF OUTPUT BUFFER

uint32 *nBytesWritten, > DECODED BYTES WRITTEN

uint32 nDesiredSampleRate | STEAMWORKS LIMITS IT TO MAX 49000

) = 0;

Our input data is not just raw compressed audio data, it contains a header and opcodes with various fields.

The main header is composed by a 32bit field followed by three flags packed as bitfields:

typedef struct {

uint32 id;

uint32 flag1:20;

uint32 flag2:4;

uint32 flag3:8;

}

TECHNICAL OVERVIEW OF THE VOICE CHAT

Steam VOIP security

This header is followed by a sequence of opcodes called nPayloadType:

At the end of the data is located the 32bit CRC, a classical checksum calculated on the whole data before it.

NPAYLOADTYPE 0

Arguments: uint16 samples

Used as a way to create silence by transmitting only the 16bit number containing the desired amount of

samples to fill.

It uses the same function of nPayloadType 1, 3 and 4 by passing it an allocated buffer filled with zeroes

used as input data and choosing the codec 3 (raw PCM).

The temporary buffer used by this function to contain the decompressed chunk is located on the stack and

has a size of 16428 bytes.

NPAYLOADTYPE 1, 3 AND 4

Arguments: uint16 samples followed by data

Type 1 is a codec no longer available, probably Miles9.

Type 3 is the uncompressed 16bit PCM data, copied “as is” to the destination buffer.

9 http://www.radgametools.com/miles.htm

http://www.radgametools.com/miles.htm

TECHNICAL OVERVIEW OF THE VOICE CHAT

Steam VOIP security

Type 4 is the Silk10 codec, the function performs its initialization using the default samplerate (11025) or

the one specified by nPayloadType 11.

The Silk codec has been introduced in Steam since 201111 replacing Miles. Steam uses the SILK SDK

provided by Skype.

These opcodes check the number of samples specified in the packet to avoid that what is specified is more

than the data available in the chunk.

NPAYLOADTYPE 2

Arguments: none

End of voip data.

NPAYLOADTYPE 10

Arguments: uint8 bytes[2]

Unused.

NPAYLOADTYPE 11

Arguments: uint16 samplerate

Used for specifying the sample rate (the frequency in hertz) of the input data.

10 http://en.wikipedia.org/wiki/SILK
11 http://store.steampowered.com/news/5100/

http://en.wikipedia.org/wiki/SILK
http://store.steampowered.com/news/5100/

SECURITY ISSUES

Steam VOIP security

Security issues

STACK CONTROLLED CORRUPTION

By using nPayloadType 0 we can decide the 16bit size of an input buffer containing zeroes that will be

copied directly in a stack buffer of 16428 bytes:

The problem is caused by the function that handles the data of the codec because it doesn’t check if the

input data is bigger than the available stack buffer, resulting in a stack-based buffer-overflow.

The possibility of specifying the exact number of zeroes to write on the stack and the lack of stack cookies,

allow an attacker to modify the lower part of the saved addresses, for example by using “(16428 – 0x4) / 2”

as number of samples.

Anyway code execution doesn’t seem possible on the Windows version we tested.

STACK-BASED BUFFER-OVERFLOW (GAME DEPENDENT)

There is also a way to exploit the previous vulnerability using controlled content.

The only check performed by nPayloadType 1, 3 and 4 is related to the amount of samples and the size of

the input data, but there are no checks performed by the function seen before.

.text:00102291 push 0

.text:00102293 push esi

.text:00102294 push 0

.text:00102296 lea ecx, [ebp+var_14]

.text:00102299 call calloc_like

.text:0010229E lea eax, [esi+esi]

.text:001022A1 push eax ; size_t

.text:001022A2 push 0 ; int

.text:001022A4 push [ebp+var_10] ; void *

.text:001022A7 call _memset

...
; int __stdcall sub_101F30(void *, size_t, int, int)
.text:00101F30 push ebp
.text:00101F31 mov ebp, esp
.text:00101F33 mov eax, 402Ch ; 16428
.text:00101F38 call __alloca_probe
...
.text:00101F8E mov eax, [ebp+arg_8]
.text:00101F91 push edi
.text:00101F92 mov edi, ebx
.text:00101F94 shr edi, 1
.text:00101F96 cmp eax, 3
.text:00101F99 jnz short loc_101FEA
.text:00101F9B push ebx ; size_t
.text:00101F9C push [ebp+arg_0] ; void *
.text:00101F9F lea eax, [ebp+var_402C]
.text:00101FA5 push eax ; void *
.text:00101FA6 call _memmove_0

SECURITY ISSUES

Steam VOIP security

So if a game can receive an audio chunk of more than 16428 bytes, it’s possible to exploit the relative stack-

based buffer-overflow using the provided data. The Steamworks documentation recommends to use a

buffer of 8 kilobytes or larger for the compressed audio collected with GetVoice.

Portal 2 and Counter Strike Global Offensive are some of the games tested by us that support packets bigger

than that stack buffer size, exactly 18432 bytes. Other games may be vulnerable too.

SAMPLERATE ENDLESS LOOP

With nPayloadType 11 we can set the desired sample rate of our audio data and it can be any number

between 0 and 65535. If we set the sample rate to zero we are able to cause an endless loop in the

following cycle:

The Steam process remains freezed with the assigned core of the CPU at 100% and must be killed from the

Task Manager:

.text:001024F0 ; int __stdcall sub_1024F0(int, int, double)

...

.text:00102523 loc_102523: ; CODE XREF: sub_1024F0+A8

.text:00102523 fld st

.text:00102525 call __ftol2_sse

.text:0010252A mov esi, eax

.text:0010252C sub esp, 8

.text:0010252F movsx ecx, word ptr [ebx+esi*2]

.text:00102533 mov [ebp+arg_4], ecx

.text:00102536 fild [ebp+arg_4]

.text:00102539 fstp [ebp+var_18]

.text:0010253C fstp [esp+34h+var_34] ; double

.text:0010253F call _floor

.text:00102544 fsubr [ebp+var_8]

.text:00102547 movsx eax, word ptr [ebx+esi*2+2]

.text:0010254C add esp, 8

.text:0010254F mov [ebp+arg_4], eax

.text:00102552 fild [ebp+arg_4]

.text:00102555 fstp [ebp+var_10]

.text:00102558 fld [ebp+var_10]

.text:0010255B fld [ebp+var_18]

.text:0010255E fsub st(1), st

.text:00102560 fxch st(2)

.text:00102562 fmulp st(1), st

.text:00102564 faddp st(1), st

.text:00102566 call __ftol2_sse

.text:0010256B movzx eax, ax

.text:0010256E lea ecx, [edi+30h]

.text:00102571 mov [ebp+arg_0], eax

.text:00102574 lea eax, [ebp+arg_0]

.text:00102577 push 2 ; int

.text:00102579 push eax ; void *

.text:0010257A call sub_399FD0

.text:0010257F fld [ebp+var_8]

.text:00102582 fadd [ebp+arg_8]

.text:00102585 add dword ptr [edi+7D5Ch], 2

.text:0010258C fst [ebp+var_8]

.text:0010258F fld [ebp+var_20]

.text:00102592 fxch st(1)

.text:00102594 fcomi st, st(1)

.text:00102596 fstp st(1)

.text:00102598 jb short loc_102523

SECURITY ISSUES

Steam VOIP security

MEMORY CONSUMPTION

The first 32bit field of the voip header is used as an ID, and the Steam process allocates new resources

everytime a new ID is parsed.

These resources remain allocated for all the time Steam is running and an attacker can saturate all the

memory of the Steam process that is limited to less than 2 Gigabytes since it’s a 32bit program.

When there is no longer memory available for the process, Steam terminates with the following error

message:

SECURITY IMPACT

Steam VOIP security

Security Impact

Considering the types of security issues found during this auditing, we think that no previous security

assessment has been performed on such code.

The minimum risk derived from these issues is a Denial of Service affecting not only the Steam process but

also the target game and any other game using the Steamworks API because all the Steamworks operation

are handled by the Steam process.

Particularly interesting is the endless loop.

Code execution may be possible.

The most critical part of these issues is that it’s not needed to develop a proof-of-concept or an exploit

specific for the target game.

In fact we created a very simple proof-of-concept consisting of a DLL that is injected in the running

Steam.exe process and replaces the original GetVoice function (the one called via IPC) with ours that fills

the buffer with the desired malformed data.

The result is that any game supporting the Steam voip can automatically exploit any remote player

reachable by the malformed voip data.

The proof-of-concept for steamclient.dll 2.25.32.45 is available as source code and pre-compiled dll:

 http://revuln.com/files/steamute_src.zip

 http://aluigi.org/poc/steamute.zip

Read the header of steamute.c for information and details on how to use it.

http://revuln.com/files/steamute_src.zip
http://revuln.com/files/steamute_src.zip
http://aluigi.org/poc/steamute.zip

FAQ

Steam VOIP security

FAQ

How much critical are these issues?

Denial of Service and possible code execution from remote without user interaction.

The issues affect the Steam process and, as side effect, cause a Denial of Service in the game.

A vulnerability exploitable inside the Steam process is much worst than one affecting the game due to the

single target (Steam.exe) for tuning the own code and the amount of personal information and interaction

possible through this platform in case of possible code execution.

Do I need to authorize a player to be vulnerable?

No, all the games automatically allow other players to send voice data, in some games the attacker must be

in the same team of the victim.

Blacklisting or whitelisting a player is optional and may not be implemented in some games.

Do I need to have Steam running to be vulnerable?

Steam is launched automatically by the supported games.

Is it easy for an attacker to exploit these issue?

Our proof-of-concept consists of some lines of code injected in the Steam process and being able to test

automatically any game that uses DecompressVoice.

So, yes, it’s very easy.

Additionally doesn’t matter if the game is compiled as 64bit because Steam is 32bit and so uses only

steamclient.dll, not steamclient64.dll.

Why Steam crashes when I exploit these vulnerabilities?

That’s caused by how Steam and Steamworks operate: the APIs of Steamworks communicate with the

Steam process via IPC so if you exploit these vulnerabilities when you are playing a game like Grid 2 the

effect will be the crash of Steam.exe and the game no longer responding.

FAQ

Steam VOIP security

Is the game *** vulnerable?

All the games that rely on Steamworks for handling the voice data are vulnerable, and obviously also Steam

itself through its integrated voice chat.

Currently we don’t have an exaustive list of games using such feature but some of the most played games12

we tested that use the DecompressVoice API are the following:

 Half-Life 2 (basically any Valve game, with the only exception of DOTA 2)

 Portal 2

 Counter Strike: Global Offensive / Counter Strike / Counter Strike: Source / Garry’s Mod

 Left for Dead 2

 Team Fortress 2

 Borderlands 2

 Grid 2

 Dirt 3 Showdown

 the recent games of the Worms series

 Unreal Engine 4

Is DOTA 2 vulnerable?

No, DOTA 2 doesn’t use the DecompressVoice API of Steamworks.

I’m a game developer who uses Steamworks and my software uses many secure memory protections.

The role of the game is just passing the malformed audio data received from the network to the Steam.exe

process via IPC so any memory protection inside the game is completely useless.

My game uses version *** of Steamworks, am I vulnerable?

The version of Steamworks used by the game doesn’t matter, the vulnerability is exploited in the

steamclient.dll library loaded by the Steam.exe process.

Please check the “Vulnerable versions” section of this paper to know what’s the latest known version of

steamclient.dll that is affected by these issues. The current version of Steam is fixed.

12 http://store.steampowered.com/stats/?snr=1_steam_4__110

http://store.steampowered.com/stats/?snr=1_steam_4__110

CHANGELOG

Steam VOIP security

Changelog

 20 Jun 2014 vulnerabilities reported to Epic Games and then Valve

 25 Jun 2014 vulnerabilities fully fixed in Steam beta client

 03 Jul 2014 fixes implemented in the stable Steam client

 04 Jul 2014 public release of this document

COMPANY INFORMATION

Steam VOIP security

Company Information

ReVuln Ltd.

Level 3, Theuma House, 302, St.Paul Street,

Valletta VLT1213

Malta

http://revuln.com

@revuln

info@revuln.com

http://revuln.com/
http://twitter.com/revuln
mailto:info@revuln.com

